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The paper presents a method of assessing the stability of high dimensional vibrating
systems under state feedback control with a short time delay. It is first proved that if the
time delay is sufficiently short, an n-degree-of-freedom system with feedback delay
maintains 2n eigenvalues near those of the corresponding system without feedback delay.
A perturbation approach is then proposed to determine the first order variation of an
arbitrary eigenvalue and corresponding eigenvector of the system with feedback delay by
solving a set of linear algebraic equations only. The computation in this approach can be
simplified to a matrix multiplication provided that the product of the time delay and the
modulus of the eigenvalue is much less than 1. Furthermore, the approach is directly related
to the Newton–Raphson iteration in the continuation of eigenvalues for long time delay.
The efficacy of the approach is demonstrated via a number of case studies on two feedback
delay systems of two degrees of freedom and ten degrees of freedom respectively.

7 1998 Academic Press

1. INTRODUCTION

Feedback controllers have been widely implemented in the active control of vibration. One
of the most important effects that limit the performance of feedback controllers in practice
is the unavoidable time delays in controllers and actuators, for they may result in
unexpected instability of the controlled system. The time delays are particularly prevalent
when digital controllers, analogue anti-aliasing and reconstruction filters and hydraulic
actuators are used [1].

Very often a vibrating system under the feedback control with time delays can be
modelled by a set of linear differential–difference equations. The controlled system is
asymptotically stable if all the roots of the corresponding characteristic equation have
negative real parts. As the characteristic equation is transcendental, it is not possible to
solve for the infinite number of characteristic roots in general, nor is it straightforward
to determine the approximate values of these roots if the system dimension is high. The
stability of linear, high dimensional differential–difference equations, therefore, has
become a much studied problem in the mathematical literature and in various engineering
fields for decades. Recent monographs [2, 3] and papers [4–7] have presented various
stability criteria and numerical approaches.

0022–460X/98/280497+15 $30.00/0 7 1998 Academic Press



. .   .498

From the viewpoint of vibration control, many practical problems remain open. For
instance, the feedback gains of controllers are usually designed according to well-developed
control strategies, say optimal control, neglecting the time delays in the controllers and
actuators. One may wonder whether the controlled system is stable if a short time delay
appears in the feedback, whether the system stability is robust with respect to small
variation of the feedback gains and so forth. When the system has a single degree of
freedom, these questions can be answered analytically [8]. However, tremendous
computational efforts have to be made when the system dimension increases. As a result,
the numerical examples to testify the current approaches [6, 7] were confined to the systems
of a few degrees of freedom.

The primary aim of this paper is to propose a numerical technique to estimate efficiently
the stability of high dimensional systems under retarded feedback control. The paper is
organized as follows. After a brief description of the system of concern in section 2, the
effect of a short time delay on the number and the distribution of the characteristic roots
is analyzed in section 3. Then in section 4, the small variation of an arbitrary eigenvalue
owing to the time delay is studied and three forms of a numerical perturbation approach
are suggested for predicting the system instability caused by the time delay. Finally, a
number of case studies are discussed in section 5 on two feedback delay systems of two
degrees of freedom and ten degrees of freedom.

2. DESCRIPTION OF THE SYSTEM WITH DELAYED FEEDBACK

Consider a linear, time-invariant system under the state feedback control with a bounded
time delay, 0E tE r. The motion of the system yields

Mẍ(t)+Cẋ(t)+Kx(t)= f(t)+Ux(t− t)+Vẋ(t− t), (1)

where x $ Rn is the displacement, M $ Rn× n, C $ Rn× n, K $ Rn× n are the matrices of mass,
damping and stiffness in the usual sense, U $ Rn× n and V $ Rn× n are the feedback gain
matrices for the displacement and the velocity respectively. In general, these matrices,
especially those of feedback gains, are not necessarily symmetric. In contrast to the
Hamiltonian description, i.e., the state description, of controlled systems in most
publications, the Lagrangian description will enable one to simplify computations in
practice and to gain insight into the system dynamics as well.

To analyze the stability of a steady state motion x(t) of the system, one can study the
equation that governs the small variation Dx(t) around x(t)

MDẍ(t)+CDẋ(t)+KDx(t)=UDx(t− t)+VDẋ(t− t). (2)

Substituting the candidate solution Dx(t)= a elt into equation (2) yields a transcendental
eigenproblem

D(l, t)a0 [l2M+ lC+K−e−lt(U+ lV)]a=0, (3a)

where l $ C1, a $ Cn and D(l, t) $ Cn× n. The steady state motion x(t) is asymptotically
stable provided that all the eigenvalues of equation (3a) have negative real parts. In this
case, the system (1) is said to be stable for short.

Meanwhile, one has the adjoint eigenproblem of equation (3a):

b*D(l, t)0 b�TD(l, t)=0, b $ Cn. (3b)

Even though equation (3b) does not give new information on the system dynamics, it will
help one to simplify the algebraic manipulation in subsection 4.2.
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3. NUMBER AND DISTRIBUTION OF EIGENVALUES FOR A SHORT DELAY SYSTEM

Consider the characteristic equation of equation (3)

P(l, t)0 det D(l, t)=det [l2M+ lC+K−e−lt(U+ lV)]=0. (4)

A controlled system is usually designed to be stable when the time delay in the state
feedback vanishes. Henceforth, one assumes that all the 2n roots of P(l, 0) have negative
real parts throughout this paper. Let BL Q 0 and BR Q 0 be the smallest real part and the
largest real part of these roots respectively, and BI q 0 be the bound of all imaginary parts
of the roots in absolute value. Moreover, two bounds for later use are defined as:

B	 L =BL − eQ 0, B	 R =BR + eQ 0, (5)

where e is a small positive number. In what follows, the effect of a short time delay on
the number and the distribution of the roots of equation (4) in the complex plane spanned
by Re (l) and Im (l) is studied. It will be shown that equation (4) has only 2n roots near
those of P(l, 0) if the time delay is short enough.

The first step of analysis is to exclude the roots of equation (4) from the shaded region
in Figure 1. Equation (4) can be written as

P(l, t)= p0 (l2n + p1 l2n−1 + · · ·+ p2n )=0, p0 $ 0. (6)

where pj , j=0, 1, . . . , 2n are the polynomials in terms of the entries of matrices M, C,
K, U and V, as well as e−lt. It is easy to see that in the right half plane Re (l)qB	 L , the
following inequality holds

=e−lt==e−Re (l)t Q e−B	 L r for 0E tE r. (7)

Thus, pj , j=0, 1, . . . , 2n are bounded in absolute value. This enables one to define two
bounds

B1 0 max
1E jE 2n

=pj = for Re (l)qB	 L , 0E tE r, (8)

B2 0max {1, BI, (2n+1)B1}. (9)

There follows the inequality

=P(l, t) == =p0 = =l2n + p1 l2n−1 + · · ·+ p2n =e =p0 = =l =2n[1− =p1 =/=l =−· · ·− =p2n =/=l2n=]

e =p0 =B2n
2 (1−2nB1 /B2)q =p0 =B2n

2 [1−2n/(2n+1)]q 0. (10)

Figure 1. Existence region of the roots of P(l, t) on the complex plane.
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This implies that none of the roots of equation (4) exists in the shaded region in Figure 1
if 0E tE r.

Next, the possibility of the roots of P(l, t) falling into the right closed rectangle
SR = {l =B	 R ERe (l)EB2, Im (l)EB2} is analyzed. Rewriting P(l, t) in SR as

P(l, t)=P(l, 0)+Q(l, t), Q(l, 0)0 0, (11)

one can see that there exist no roots of P(l, 0) in the closed rectangle SR , thereby

B3 0min
l $ SR

=P(l, 0) =q 0. (12)

From the continuity of P(l, t) with respect to t, there exists a small, positive number
dR = d(e)Q r such that

max
l $ SR

=Q(l, t) =QB3, 0E tQ dR . (13)

Consequently, one has

=P(l, t) =q =P(l, 0) =− =Q(l, t) = qB3 −max
l $ SR

=Q(l, t) =q 0, 0E tQ dR , (14)

which excludes the roots of P(l, t) from the closed rectangle SR .
Finally, the number of roots of P(l, t) in the left closed rectangular region

SL = {l =B	 L ERe (l)EB	 R , Im (l)EB2} is studied, where P(l, t) can be written as in
equation (11) again. The definitions of bounds B	 L , B	 R and B2 ensure that there is no root
of P(l, 0) on the boundary G of the closed region SL , namely

B4 0min
l $ G

=P(l, 0) =q 0. (15)

Also from the continuity of P(l, t) with respect to t, there exists a small, positive number
dL = d(e)Q r such that

max
l $ G

=Q(l, t) =QB4, 0E tQ dL . (16)

According to Rouché’s theorem in complex analysis [9], the number of roots of P(l, t)
in the closed rectangle SL is the same as that of P(l, 0) in SL as long as 0E tQ dL . This
completes the present analysis.

In summary, given eq 0, there exists a delay bound d(e)=min (dL (e), dR (e)) such that
P(l, t) continues to have 2n roots in the closed rectangle SL if 0Q tQ d(e). However, the
region of distribution of these roots in the complex plane may become slightly larger.

Without loss of generality, one can assume that the roots with the largest real part are
a pair of complex roots of P(l, 0) and distinct from the other roots of P(l, 0). If one lets
B	 L be greater than the second largest real part of the roots, one can similarly prove that
P(l, t) has a pair of complex roots only in the narrow strip SL when 0Q tQ d(e). In this
case, the real part of this pair of complex roots is bounded within [B	 L , BR + e]. One can
therefore estimate the stability of the system with feedback delay simply from the variation
of a single pair of roots of P(l, 0) provided the time delay is sufficiently short. This pair
of roots will be referred to as ‘‘the most dangerous eigenvalues’’ hereafter for simplicity.

4. ESTIMATION OF EIGENVALUES OF A SHORT DELAY SYSTEM

Should there exist no time delay in the state feedback, equations (3a) and (3b) would
become a pair of adjoint, quadratic eigenproblems, the solutions of which yield

D(lr , 0)ar 0 [l2
r M+ lr (C−V)+ (K−U)]ar =0,

b*r D(lr , 0)= b*r [l2
r M+ lr (C−V)+ (K−U)]=0, r=1, 2, . . . , 2n, (17)
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where lr $ C1 and ln+ r = l�r $ C1, r=1, 2, . . . , n are n pairs of conjugate complex
eigenvalues, ar $ Cn, ar+ n = ār $ Cn, br $ Cn and br+ n = b�r $ Cn, r=1, 2, . . . n are the
corresponding eigenvectors. Specifically, all the eigenvectors are scaled to

a*r ar = b*r br =1, r=1, 2, . . . , 2n. (18)

When the feedback control involves a short time delay, there exists an eigenvalue l	 r near
the eigenvalue lr . Similarly there is a corresponding eigenvector a	 r near ar . In this section,
one studies how to determine l	 r and a	 r for a specific time delay t when lr and ar are given.

4.1.        

One can write

l	 r = lr +Dlr , ãr = ar +Dar , ã*r ar =1. (19)

Substituting the first two equations in equation (19) into equation (3a) and dropping the
higher order terms of Dlr , Dlr Dar , etc., one has

D(lr , t) (ar +Dar )−Dlr E(lr , t)ar =0, (20)

where

E(lr , t)0−
d
dl

D(l, t) =l= lr =−{2lr M+C+e−lr t[(U+ lr V)t−V]} $ Cn× n. (21)

To solve equation (20) for Dlr and Dar , a set of linear equations with the unknown
complex vector pr is constructed:

D(lr , t)pr =E(lr , t)ar . (22)

Since lr is not the eigenvalue of equation (3a) when tq 0, the matrix D(lr , t) in equation
(22) is invertable. Besides, E(lr , t)ar must be a non-zero vector. Otherwise equation (20)
implies that lr is the eigenvalue of equation (3a). The solution of equation (22) thus is a
unique non-zero vector pr . Comparing equation (22) with equation (20) yields

ãr = ar +Dar =Dlr pr , (23)

namely pr is an eigenvector associated with the eigenvalue l	 r of equation (3a).
Following the idea of the Rayleigh quotient, one writes out

p*r D(lr , t)pr

p*r E(lr , t)pr
=

ã*r E(lr , t)ar /Dl� m
ã*r E(lr , t) (ar +Dar )/Dlr Dl� m

=Dlr $1−
ã*r E(lr , t)Dar

ã*r E(lr , t)ar
+ · · ·%. (24)

There follows an explicit expression for Dlr

Dlr 1
p*r D(lr , t)pr

p*r E(lr , t)pr
=

p*r [l2
r M+ lr C+K−e−lr t(U+ lr V)]pr

p*r {2lr M+C+e−lr t[(U+ lr V)t−V]}pr
. (25)

Substituting equation (25) and equation (23) into equation (20), one has the new eigenvalue
and eigenvector.

4.2. S         

If the time delay t is so short that the delay phase =lr t =�1, the matrices D(lr , t) and
E(lr , t) can be expanded in a Taylor series at lr with respect to lr t, then

D(lr , t)1D(lr , 0)+ lr t(U+ lr V), E(lr , t)1E(lr , 0)=−(2lr M+C−V). (26)
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Substituting equation (26) into equation (20) yields

D(lr , 0)Dar + lr t(U+ lr V)ar −Dlr E(lr , 0)ar =0. (27)

Premultiplying equation (27) by the left eigenvector b*r associated with eigenvalue lr , one
has

lr tb*r (U+ lr V)ar −Dlr b*r E(lr , 0)ar =0. (28)

As proved in the Appendix, one has

b*r E(lr , t)ar =−b*r (2lr M+C−V)ar $ 0. (29)

The simplified explicit expression for Dlr , therefore, reads

Dlr =
lr b*r (U+ lr V)ar

b*r E(lr , 0)ar
t=−

lr b*r (U+ lr V)ar

b*r (2lr M+C−V)ar
t. (30)

It is easy to verify that equation (30) is identical to the result obtained by the first order
perturbation with respect to the small parameter t.

From equation (30), one can define the sensitivity of the eigenvalue module with respect
to the time delay

m(lr )0 =Dlr /lr t == =b*r (U+ lr V)ar /b*r (2lr M+C−V)ar =, (31)

and thus one has,

lim
lr:0

m(lr )= =b*r Uar /b*r (C−V)ar =, lim
lr:a

m(lr )= =b*r Var /2b*r Mar =. (32)

It is worth noting that the sensitivity is independent of the system stiffness matrix K.
Keeping these relations in mind, one can estimate the relative change of the eigenvalues
due to a very short time delay.

4.3. 

Presented above are two forms of the new approach for estimating an eigenvalue of the
system with feedback delay. The difference between these forms is the truncation of
higher order terms, which consequently effects accuracy and computational effort.
Provided the time delay is very short, i.e., =lr t =�1, equation (30) gives an accurate
and efficient estimate. If this inequality does not hold, yet =Dlr =/=lr = is still a small
quantity, one can estimate the eigenvalue from equation (25), where the eigenvector pr

has to be determined from a set of n-dimensional, complex, linear equations in
advance.

Even though lr is denoted as the eigenvalue of the delay-free system in subsection 4.1,
none of the eigenvalue properties of the delay-free system are used during the analysis.
Thus, one can take lr as an initial estimate of the eigenvalue of the delay system and
repeatedly use equation (25) as a Newton–Raphson iteration if =Dlr =/=lr = is not small. If
the time delay t is considered as a parameter, equation (25) can repeatedly be used as a
continuation technique to trace the variation of an eigenvalue with increase in time delay
t. This is the third form of the present approach to the case of long time delay and will
be demonstrated in the next section.

In addition, it is interesting to apply these estimates to an underdamped,
single-degree-of-freedom system with feedback delay. Now equation (25) reads.

Dl1 =
D(l1, t)
E(l1, t)

=−
l2

1 m+ l1 c+ k−e−l1 t(u+ l1 v)]
2l1 m+ c+e−l1 t[(u+ l1 v)t− v]

, (33)
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where m, c, k, u and v are the scalar parameters corresponding to the matrices in equation
(1), and

l1 = [(v− c)+ j z4m(k− u)− (c− v)2]/2m, j=z−1. (34)

Similarly, equation (30) in this case becomes

Dl1 =D(l1, t)/E(l1, t)=−t(l1 u+ l2
1 v)/(2l1 m+ c− v). (35)

Substituting equation (35) into equation (34), one obtains

Re (Dl1)=−t(mu+ v2 − cv)/2m2. (36)

It is worth noting again that the variation of the real part of the eigenvalue is independent
of the system stiffness.

5. ILLUSTRATIVE EXAMPLES

5.1.  -DOF     

To demonstrate the relative merits of the above approaches, the stability of the steady
state motion of a dual-mass system with feedback delay as shown in Figure 2 is considered.
The motion of the system yields equation (1), where

M=$10 0
1%, C=$ 0·2

−0·1
−0·1

0·1%, K=$ k
−1

−1
1%, (37)

whereas the stiffness coefficient k and the feedback gain matrices U and V will be variously
specified in different cases. As a base comparison, the eigenvalues for a given time delay
t in each case were first determined from the intersections of the curves Re (P(l, t))=0
and Im (P(l, t))=0 plotted numerically in the complex plane of l by using MAPLE8 V
3.0. These eigenvalues shall be taken as the exact numerical results in what follows. For
the sake of simplicity, the terms ST, DT and NR will be used hereafter for the approach
based on single truncation of eigenvalues in subsection 4.1, the approach based on double
truncations of both eigenvalues and the time delay in subsection 4.2, and the
Newton–Raphson iteration on the basis of ST, respectively, Also, tr will be used to denote
the shortest time delay when the rth order mode of the delay-feee system goes unstable and
is referred to as the rth critical time delay for short.

Figure 2. Dual-mass system under the state feedback with time delay.
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Figure 3. Variation of the eigenvalues with an increase of time delay in Case 1. (a) First eigenvalue; (b) second
eigenvalue. Key: –w–, NR; ––, ST; . . . . , DT.

5.1.1. Case 1
As the first and the simplest case, a state feedback was introduced to the system from

the right mass to the connection only, so that

k=2·0, U=$0·0
0·0

1·0
−1·0%, V=$0·0

0·0
0·1

−0·1%. (38)

The variation of the real and imaginary parts of two eigenvalues with an increase of time
delay t is shown in Figure 3, where the real parts of two pairs of conjugate eigenvalues
went to zero when the time delay reached the critical values t1 1 0·396 and t2 1 0·418
respectively. The results of NR in Figure 3 were identical to the exact results represented
by circles. Both ST and DT gave good estimates of tr . The relative errors were −0·1%
and 1·5% for the first pair of conjugate eigenvalues, and 3·1% and −0·96% for the second,
respectively. Since DT provides a linear relationship between an eigenvalue and the time
delay, the estimation error, especially that of the second pair of conjugate eigenvalues,
became unacceptable when the time delay was longer.

Figure 4. Distribution of eigenvalues of equation (3) for Case 1. (a) t=0·1; (b) t=2·5.
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Shown in Figure 4 are the curves of Re (P(l, t))=0 (thick) and Im (P(l, t))=0 (thin)
on the upper half complex plane for two specific time delays t=0·1 and t=2·5,
corresponding to a stable status and an unstable status respectively. Each intersection
point of these curves indicates an eigenvalue of equation (3) on the complex plane. The
new eigenvalues emerged in the figure only when the time delay was long enough. It is
this fact that enables one to analyze the system stability according to the evolution of
eigenvalues of the delay-free system.

5.1.2. Case 2
The type of feedback in this case was kept the same as that in Case 1 and only the

velocity feedback gains were increased from 20·1 in Case 1 to 21·0 here, i.e.,

k=2·0, U=$0·0
0·0

1·0
−1·0%, V=$0·0

0·0
1·0

−1·0%. (39)

The negative velocity feedback reduced the real part of the eigenvalues of the delay-free
system, and hence increased the critical time delays. Intuitively speaking, it would appear
more difficult to estimate eigenvalues in this case. In Figure 5 are shown the variations
of the real and imaginary parts of the two pairs of conjugate eigenvalues with increase in
time delay, which reached the critical values respectively at t1 =1·135 and t2 =0·644, much
longer than those in Case 1. Here again the results of NR were the same as the exact results.
As shown in Figure 5, both ST and DT offered good estimations of the critical time delay
t1 with relative errors of −1·76% and 0·44% respectively. For the estimation of the second
critical time delay t2, ST gave an under-estimation t2 =0·51. However, DT totally failed
because of the non-monotonic trend of Re (l2) with an increase of the time delay. In this
case, NR is the more appealing approach even though it required a few iterations. It is
important to note that even though l1 was the ‘‘most dangerous eigenvalue’’ when the
system did not involve time delay, Re (l2) became positive earlier then Re (l1) when the
time delay increased. Hence, the ‘‘most dangerous eigenvalue’’ can change for a sufficiently
long time delay.

Figure 5. Variation of the eigenvalues with an increase of time delay in Case 2. (a) First eigenvalue; (b) second
eigenvalue. Key: –w–, NR; ——, ST; . . . . , DT.
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Figure 6. Variation of the eigenvalues with an increase of time delay in Case 3. (a) First eigenvalue; (b) second
eigenvalue. Key: –w–, NR; ——, ST; . . . . , DT.

5.1.3. Case 3
To test the efficacy of the approach, the system was intentionally designed to be

more complicated by introducing a stronger displacement feedback from both masses,
namely

k=2·0, U=$−2·0
0·0

3·0
−3·0%, V=$0·0

0·0
1·0

−1·0%. (40)

As shown in Figure 6, the real parts of the first and the second eigenvalues vanished at
t1 =0·139 and t2 =0·298 respectively. Both ST and DT again gave good estimations for
the critical time delay t1 with relative errors of −0·07% and 0·94% respectively. For more
difficult estimation of the second critical time delay t2, the relative errors of ST and DT
were −6·7% and 76%, respectively.

5.1.4. Case 4
Compared with Case 3, the system was rendered even more complicated by adding the

velocity feedback from the left mass to itself, i.e.,

k=2·0, U=$−2·0
0·0

3·0
−3·0%, V=$−1·0

0·0
1·0

−1·0%. (41)

As shown in Figure 7, even though DT failed to estimate accurately the critical time delays
for either eigenvaue in this case, both NR and ST worked successfully. For the two critical
time delays t1 =0·383 and t2 =0·365, the relative errors of ST were respectively 9·1% and
13·8%. Here again the real part of the ‘‘norminally less dangerous’’ eigenvalue l2 of the
delay-free system became positive a little bit earlier than that of the ‘‘most dangerous’’ one
when the time delay increased.

5.1.5. Case 5
In the final case, the right spring in the system was replaced with an extremely stiff one,

while the state feedback was kept the same as that in Case 3, namely
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Figure 7. Variation of the eigenvalues with an increase of time delay in Case 4. (a) First eigenvalue; (b) second
eigenvalue. Key: –w–, NR; ——, ST; . . . . , DT.

k=399·0, U=$−2·0
0·0

3·0
−3·0%, V=$0·0

0·0
1·0

−1·0%. (42)

Figure 8 shows that the first mode of the system became unstable when the time delay
reached t1 =0·316, whereas the second mode remained stable no matter how long the time
delay became. Not surprisingly, ST predicted the oscillation of the second eigenvalue with
respect to time delay as accurately as NR did, but DT gave a totally inaccurate prediction.
This demonstrates the premise that ST and DT work within the ranges =Dlr /lr =�1 and
=lr t =�1 respectively.

5.2.  -DOF     

In order to demonstrate the applicability of the new approach to high dimensional
systems with delayed feedback, a numerical study was made on an undamped chain system
of ten degrees of freedom as shown in Figure 9, where

mr =1·0, kr =1·0, r=1, 2, . . . , 10. (43)

Figure 8. Variation of eigenvalues with an increase of time delay in Case 5. (a) First eigenvalue; (b) second
eigenvalue. Key: –w–, NR; ——, ST; . . . . , DT.
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Figure 9. A ten-DOF system with a delayed velocity feedback.

To increase the damping of the system artificially, one channel of velocity feedback was
introduced with the feedback gain v11 =−1·0. When there was no time delay in the
feedback, the 10 pairs of conjugate eigenvalues of the system could easily be solved by
using commercially available eigenproblem codes. The real parts and the imaginary
parts of these eigenvalues are listed in Table 1 according to the absolute value of their
imaginary parts, from the minimum to the maximum. In this case, the dangerous
eigenvalue was l1.

When there was a time delay in the feedback, the stability analysis of this high
dimensional system became very complicated. For example, the numerical approaches
proposed by Su et al. [6] and Chen [7] involve very lengthy algebraic manipulations
including the decomposition of singular values and so forth. However, the new approach
written in a few lines of FORTRAN and incorporated with standard subroutines of linear
algebra completed the analysis within 10 s on a PC with a Pentium-MMX166 chip. The
critical time delays for all pairs of eigenvalues determined by NR are listed as the last
column in Table 1.

Intuitively speaking, the higher a natural frequency, the shorter the critical time delay.
So, it was expected that the ‘‘most dangerous eigenvalue’’ should be l10 with an increase
of time delay since the real part of l10 was the second smallest when there was no time
delay in the feedback. Nevertheless, the ‘‘safest eigenvalue’’ l5 became dangerous first with
increase of time delay, and vanished at t5 =0·732. Figure 10 shows the evolution of
eigenvalues l1, l5 and l10 with increase of the time delay. This example indicates that
care must be taken when the feedback of a high dimensional system involves any time
delay.

T 1

Real and imaginary parts of eigenvalues of the delay-free system and
corresponding critical time delays

r Re (lr ) Im (lr ) tr

1 −0·0021 0·1497 10·375
2 −0·0165 0·4506 3·425
3 −0·0383 0·7500 2·064
4 −0·0660 1·0416 1·501
5 −0·2136 1·3013 0·732
6 −0·0877 1·3555 1·201
7 −0·0431 1·5927 1·023
8 −0·0215 1·7688 0·909
9 −0·0089 1·8964 0·839

10 −0·0022 1·9740 0·799
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Figure 10. Variation of the eigenvalues with an increase of time delay: (a) l1; (b) l5; (c) l10. Key: –w–, NR;
——, ST; . . . . , DT.

6. CONCLUDING REMARKS

Provided the time delay in the state feedback is sufficiently short, the stability of a linear
n-degree-of-freedom system with single feedback delay is governed by the evolution of the
2n eigenvalues of the delay-free system with increase in time delay. To study the stability
of the system involving feedback delay, a perturbation approach is proposed so as to
estimate efficiently the evolution of these eigenvalues. The approach can be used in three
forms according to the length of time delay. If the time delay t is so short that the
eigenvalue lr of concern yields =lr t =�1, the simplest form of the approach gives an
expression, similar to the Rayleigh quotient, for the variation of lr proportional to t. When
the time delay is not so short, two alternative forms of the approach enable one to trace
the variation of lr by solving a set of linear algebraic equations or by using
Newton–Raphson iteration. The later form gives the exact numerical envolution of the
eigenvalues with increase of time delay. The efficacy of these forms of the approach was
well supported by the case studies on two feedback delay systems of two degrees of freedom
and ten degrees of freedom, respectively.

Finally it is worthy of mention that it is straightforward to generalize the analysis and
the assertions in section 3 for the following n-degree-of-freedom system with asynchronous
time delays in different feedback channels
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s
n

j=1

[mij ẍj (t)+ cij ẋj (t)+ kij xj (t)]= fj (t)+ s
n

j=1

[uij xj (t− tij )+ vij ẋj (t− hij )]. (44)

As the truncation in equation (20) requires only a small variation of eigenvalues due to
the time delay, the approach described here can be directly used to analyze the stability
of this kind of system also. However, much more computational effort is required in
tracing the evolution of eigenvalues if a system involves many different time delays as in
equation (44).
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APPENDIX

Consider the equation of the rth eigenvalue and its eigenvector in the state space

(A− lr I)ur 00$ 0
−M−1(K−U)

I
−M−1(C−V)%− lr I1$ur1

ur2%=0. (A1)

By comparing equation (A1) with the first equation in equation (17), one can readily find

ur1 = ar , ur2 = lr ar . (A2)

The adjoint relation of equation (A1) reads

v*r (A− lr I)0 [v*r1 v*r2]0$ 0
−M−1K

I
−M−1C%− lr I1=0, (A3)
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whereby one obtains

l2
r v*r2 + lr v*r2 M−1C+ v*r2 M−1K=0, v*r1 = v*r2 (lr +M−1C). (A4)

Comparing the first equation in equation (A3) with the second equation in equation (17),
one finds

v*r2 = b*r M, v*r1 = b*r (lr M+C). (A5)

Noting the orthogonality relation of adjoint eigenvectors

v*r ur = v*r1 ur1 + v*r2 ur2 $ 0. (A6)

and substituting equation (A2) and equation (A5) into equation (A6), one obtains

2lr b*r Mar + b*r (C−V)ar $ 0. (A7)

This completes the proof.


